Measuring Interactions of Dna with Cationic Carriers at the Single Molecule Level: a Step toward a Rational Design of Cationic Carriers to Reach Maximum Transfection Efficiency

نویسندگان

  • Amy Lee
  • Jason D. Kahn
  • Peter Kofinas
  • Silvina Matysiak
چکیده

Title of Document: MEASURING INTERACTIONS OF DNA WITH CATIONIC CARRIERS AT THE SINGLE MOLECULE LEVEL: A STEP TOWARD A RATIONAL DESIGN OF CATIONIC CARRIERS TO REACH MAXIMUM TRANSFECTION EFFICIENCY Amy Lee, Doctor of Philosophy, 2015 Directed By: Assistant Professor Joonil Seog, Department of Materials Science and Engineering Gene delivery has seen limited clinical success due to poor transfection efficiency or risk of carrier toxicity. Little understanding exists about the dynamic mechanical properties of DNA:carrier complexes, which we hypothesize are critical for protection and release of DNA. Using optical tweezers, we investigated the DNA condensation behaviors of 19-mer poly-L-lysine (PLL), a histidine-lysine peptide, 25 kDa branched polyethylenimine (PEI), G2-triethylenetetramine conjugated gold nanoparticles (G2TETA), and two triblock copolymers to identify the optimal force signature for efficient transfection. Force-extension profiles indicate that PLL and HK peptides condense DNA, showing force plateaus. When free peptide is removed, the force plateau of HK complexes decreased, but hysteresis persisted, indicating that some HK remains bound. Upon changing the pH from 7.4 to 5, HK complexes recovered plateau forces, due to protonation of bound HK. This charge-regulated mechanical behavior is enhanced when the DNA:HK complex is exposed to Zn2+, resulting in the formation of a mechanically stiff complex. DNA:PEI complexes showed transient force plateaus with a maximum of 35 pN. Shortening of contour length was observed for condensation with 5 nM PEI. 1 M NaCl destabilized DNA:PEI complexes suggesting electrostatic interactions as the major force driving complexation. When 50 nM G2-TETA binds DNA, ~10 pN force plateaus appeared, disappeared, and contour length decreased despite pulling forces up to 50 pN. Neither 1 M NaCl nor 5 mg/mL heparin disrupted the complex. Contour length increased in 5% sodium dodecyl sulfate solution indicating that hydrophobic interactions play a major role in forming mechanically rigid condensates. Both guanidinylated and base copolymers show maximal plateau behavior followed by reduction in contour length. Recovery of the extension for the DNA:base copolymer complex is achieved by a combination of glutathione and either high salt or heparin. Conversely, high salt or heparin conditions alone are sufficient for destabilization of DNA:guanidinylated copolymer. Thus, guanidinylation of the copolymer enhanced sensitivity to ionic environments. Condensed DNA force profiles using different agents were unique regarding their condensation behaviors and responses to environmental changes. Regulation of these interaction forces between DNA and carriers during complex preparation and under physiological conditions will improve transfection efficiencies in vivo. MEASURING INTERACTIONS OF DNA WITH CATIONIC CARRIERS AT THE SINGLE MOLECULE LEVEL: A STEP TOWARD A RATIONAL DESIGN OF CATIONIC CARRIERS TO REACH MAXIMUM TRANSFECTION EFFICIENCY

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of SW480 Colon Cancer Cells Transfection with Lipofectamine 2000

ABSTRACT           Background and Objectives: Nonviral carriers including those based on synthetic cationic lipids, offer several advantages over the viral counterparts. These carriers are able to form complexes with nucleic acids and deliver genes into the cells via the cellular endocytosis pathway, without significant toxicity. The level of transg...

متن کامل

Optimization of conditions for gene delivery system based on PEI

Objective(s): PEI based nanoparticle (NP) due to dual capabilities of proton sponge and DNA binding is known as powerful tool for nucleic acid delivery to cells. However, serious cytotoxicity and complicated conditions, which govern NPs properties and its interactions with cells practically, hindered achievement to high transfection efficiency. Here, we have tried to optimize the properties of ...

متن کامل

Investigating lipopolymers based on polyethylenimine and nanoliposome for gene delivery to prostate cancer (PC3) cell line

Background: Non-viral Nano carriers such as liposomes and cationic polymers based on engineered properties are regarded in gene delivery field. Although these carriers do not have weaknesses of viral vectors, but they are less efficient than viruses and they still need to be improved as favorable gene delivery carriers. Amongst non-viral carriers, cationic liposomes have been proposed for clini...

متن کامل

Three-dimensional imaging of lipid gene-carriers: membrane charge density controls universal transfection behavior in lamellar cationic liposome-DNA complexes.

Cationic liposomes (CLs) are used worldwide as gene vectors (carriers) in nonviral clinical applications of gene delivery, albeit with unacceptably low transfection efficiencies (TE). We present three-dimensional laser scanning confocal microscopy studies revealing distinct interactions between CL-DNA complexes, for both lamellar L(alpha)(C) and inverted hexagonal H(II)(C) nanostructures, and m...

متن کامل

Cationic liposome-nucleic acid complexes for gene delivery and gene silencing.

Cationic liposomes (CLs) are studied worldwide as carriers of DNA and short interfering RNA (siRNA) for gene delivery and gene silencing, and related clinical trials are ongoing. Optimization of transfection efficiency and silencing efficiency by cationic liposome carriers requires a comprehensive understanding of the structures of CL-nucleic acid complexes and the nature of their interactions ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015